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ABSTRACT 

The paper demonstrates the use of simplified elasticity solutions 

to determine the mechanical response of thick laminated beams and plates 

subject to out-of-plane loading, 

Excel lent results were obtained which compare very favorably with 

theoretical numerical and experimental analysis from other sources. 

The most important characteristic of the solution methodology 

presented is that it combines great mathematical precision with 

simplicity. This symbiosis has been sorely needed for design with 

advanced composite materials, 

KEYWORDS: Laminated beam, laminated plate bending, simplified 

elasticity solution 



1. Introduction 

The number of applications for which polymer based composites are 

used is increasing every year. Projections for the last decade of our 

century indicate that structures will be composed of between 25% and 50% 

of composite materials depending on the industrial sector for which they 

are designed and built. The latest developments in the areas of 

new 

es 9 

processing and manufacturing technology open such a broad avenue of 

possibilities that the use o f  composites, by the end of the ninet 

will probably be even higher than the most optimistic predictions. 

With this increasing number of applications, at least two prob 

become more and more urgent: 

a) How to properly design with composites 

b) How to ensure the durability o f  components subject 
to mechanical and environmental loading conditions 

The classical laminated plate theories (CPT) are inadequate 

ems 

for 

design especially in those applications where out of plane loads need to 

be supported, i.e., bending, buckling, impact etc. The shear- 

deformation effects are unaccounted for in the CPT which in turn leads 

to incorrect estimates of durability. 

The objective of this paper is to demonstrate the use of a 

simplified theory of elasticity approach for the stress analysis of 

laminated beams and plates. The advantage of this solution methodology 

is that closed form analytical solutions can be obtained for any 

laminate layup. In addition, factors which are related to the 

durability such as resin rich regions, gradients in material properties 

due t o  processing of thick laminates, etc. can be incorporated without 

undue complications. 



The theory of elasticity for laminated beams and plates is based on 

an approach which has been advocated by Biot [1,2]. The accuracy of the 

resulting solutions to determine the deflections, stresses and strains 

in multilayered components is demonstrated. Results are compared with 

existing elasticity solutions, experiments and finite element results. 

The ability to use analytical solutions which are simple, accurate 

and which can incorporate realistic fabrication features should greatly 

enhance the engineers ability to design durable and trouble-free 

laminated components. 

2. Formulation o f  the Problem 

We consider an elastic and orthotropic plate of thickness h, 

described by the displacement components u and w. The x-axis is 

directed along the span and the z-axis is perpendicular to the plate, as 

shown in Fig. 1. The strain components are: 

The stress-strain relations for the orthotropic material are: 

in which 

‘X = ‘11 ‘X + ‘13 ‘Z 

‘Z = ‘13 ‘X + ‘33 ‘ z  
T = 2CS5 E X Z  

XZ 
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, 

‘55 = ‘13 

- ‘g3 E33’E221 (4) 

If the stress uz, normal to the plate, is neglected and assumed to be 

zero, then relocations (2) can be rearranged and become, 

u  ME 

‘xz 

X X 

= 2 613 E~. 

The coefficient M can be written as: 

1 2 
(‘11 ‘33 - ‘13) M = -  

4c33 

Substituting the relations (3) into (6), we obtain 

and for an isotropic material; 

E 
4(1-~ ) 2 M =  

(5) 

The equilibrium equations are: 
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Z a 0  

+ - = o  xi! a T  - 

Note that the assumption uz = 0 is only introduced in the stress-strain 

relations and not in the equilibrium equations. This is due to the fact 

that we can qeglect the magnitude of ai! with respect to ax and T~~ but 

not its spatial rate o f  change. We investigate displacement fields, 

which are sinusoidally distributed along x. Trial solutions for u and w 

can be written as: 

u = U ( t )  sin ( a x )  

w = w cos (ex) 

In which Q is the wavelength along the x-direction. An additional 

approximation is introduced here by assuming W to be a constant, equal 

to the average displacement across the thickness. The second equation 

(3) yields 

T = T(Z) sin EX 
XZ 

with ~ ( t )  = G13 (a dr - ew) 

By eliminating ax and U between equations (3) and the first o f  equations 

(9). We btain the following differential equation in T~~ . 
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xz The integration of this second-order differential equation in T 

requires two boundary conditions. Let the boundaries o f  the beam be 

located at z = 2 h/2 (Fig. 1) and assume the shear r1 = T~~ (h/2) and 

( -  h/2) to be given at the top and bottom. With these boundary 

conditions the function ~ ~ ~ ( 2 )  is obtained by integration of Eq. 12, 

where M, 613, e and w play the role of parameters. By integrating the 

second equilibrium equation (9) along z ,  we obtain: 

r 2  = Txz 

T dz xz i q = -  
-h/2 

The total load applied to the same unit area is: 

[UZll = [uz12 = q COSEX 

Since T ( Z )  is known in terms of w, equation (13) determines the 

deflection w when the load q is given when we know T ~ ~ ,  the values of U 

and ox are determined by combining the first of equations (1) with the 

first of equations (3). We obtain: 

1 %Z u =-- 
4Me2 dz 

dT 
0 = - -  xz cosax 

x e dz 
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con 

w i t h  

The 

3. So lu t i on  f o r  Lamina and Laminates 

foregoing methodology may be used t o  analyze laminates 

t i t u t  d by the  superposi t ion o f  adherent homogeneous layers.  

Consider f i r s t  a s ing le -o r tho t rop i c  lamina o f  th ickness h and 

The shear stresses a t  the top constant e l a s t i c  c o e f f i c i e n t s  613 and M. 

and bottom o f  the  lamina are denoted by T~ and r2 respec t ive ly .  

Eqn. 12 i s  r e a d i l y  in tegra ted  i n  t h i s  case, the  s o l u t i o n  o f  which 

i s  

T = C1 coshsaz + C2 sinhsaz - a GI3W xz 

- 
M B = 2 / -  

G13 

From equat ion (15)  we der ive  the  values U1 and U2 o f  U a t  the  top  and 

bottom o f  the  l aye r  

w i t h  

- - (T,a + T2b) + C W  
4 / MG13 u1 - 

- (Tlb + T a) - CW 2 - 
4 / MG,, u2 - 

a = tanhsy + tanhsv 1 
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The normal load q C O S ~ X  applied to this layer is obtained from Eq. 13. 

2 C q = - (r1 + T ~ )  C + II h GI3 W(l - -) 
Y 

For a laminate constituted o f  N adhering layers, the i-th layer of 

thickness hi is characterized by the material properties 

We denote 

by T~ and T ~ + ~  the shear stresses at the top and bottom o f  the i-th 

layer respectively and by Ui and Ui+l the displacements at the 

corresponding faces. The condition of adherence o f  the layers i and i+l 

are obtained by equating the displacements at the interface. Applying 

equations (18), we obtain a recurrency equation which has to be 

satisfied by the interface stress at three subsequent interfaces. 

and (w‘) . Corresponding parameters are ai, bi and ci. 

- ‘i where A i  - 
4d Hi Gi3 

-i - G~~ G~~ 
2 2 GLT sin e + GTT cos e ‘13 - 

1,2 ... N 

layer # i 
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layer  # i 
11 

with:  

1 - - 
2 1 2vLT 2 2 sin e 

+ (- - EL) sin e cos e + E  

Ell - 2 cos e 
EL LT T 

- - "LT 4 4 = E [- ( s i n  e + cos e )  - '13 11 EL 

1 2 2 -) s i n  e cos e ]  1 1  (7 + - GLT 

note: f o r  e = 0 E13 = GLT = GI3 

f o r  e = 900 

- 
"13 - "LT = "13 

- 
'13 = GTT = '23 
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in which e is the angle between the fibers (which are oriented in the x- 

y plane) and the x-direction. 

Eqn. 20 is a system o f  (n-1) equations, in the (n-1) interface 

stresses. Assuming that the interface stresses T~ and T~ at the top and 

bottom o f  the laminate are given. The other interface stresses are 

obtained in terms of a single unknown W .  The latter is evaluated by 

considering the total load of q cos ax applied to the laminate. It is 

the sum o f  all individual loads o f  cos a x  acting on each layer, Hence 

where according to Eq. 19 

2 i 'i 
yi 

q i  = - ( T ~  + T ) ci + a h i  Gxz (1 - -) W i +I 
we may write 

c 

Since T~ is a known function o f  W ,  while q is given, equation (25) 

determines W. 

Equations (13 ... 21) thus allow us to obtain closed form 

analytical solutions for any laminate layup. These solutions can easily 

be programmed on a hand calculator or PC and be used in the design 

office for preliminary sizing of laminated composite beams and sandwich 

panels. 
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In the remainder of this paper, we will demonstrate the use and the 

accuracy of this approach. Results are compared with theoretical, 

numerical and experimental data which is available in the literature. 

4. Results for Lamina with 0" and 90" Orientation 

We shall first i 1 lustrate that we1 1-known strength of material s 

results can be retrieved or a special case of the elastcity solution 

which we outlined in 3 .  

Consider the case of a simply supported homogeneous orthotropic 

beam subject to three point bending. The conditions at the top and 

bottom surface are T~ = 0 and T~ = 0, as schematically indicated in Fig. 

2. 

Upon substitution of T~ and T in Eq. 19, we obtain 2 

The deflection o f  a beam on three-point bending 

expanding the load P in Four 

displacement components. The 

m 

W =  n 2p 7 

is easily found by 

er series and by add ng the corresponding 

result is: 

1 
L -  - (1 - tanhey,) aa h ~ 1 3  1,3,5 

*'m 
Th with ym = m - 2a 
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Expanding tanhey, in series, and retaining the first three terms, we 

obtain 

using the binomial approximation 

we obtain, by adding the three terms 

3 ‘11 h W =  Pa [ .9994 + 1.12 ($ 1 
48 rll I ‘13 

This is a well-known result, from the theory of strength of materials, 

that is often used to obtain the interlaminar shear modulus (E131 from 

short beam deflection data. 

The difference (in %) between the deflection obtained using the 

elasticity solution (Eq. 28) and the strength of materials result Eq. 

31) is plotted in Fig. 3. The curves are representative for a 

undirectional graphite epoxy with FI1 = E l l  = 171 Gpa (25 lo6 psi) and 
- 
GI3 = G13 = 1.37 Gpa (.210 psi) . The difference is calculated as: 

W (Eq. 31) - W (Eq. 28)- 100% W (Eq. 28) DIFF = 

Fig. 3 indicates that the strength of materials solution slightly 

overestimates the deflection (less than 2%) for ratio’s of beam-span to 

thickness which are larger than 10. Both solutions deviate rapidly for 

11 



span t o  th ickness r a t i o ' s  which are less  than 4. We can thus conclude 

t h a t  the s t rength  o f  ma te r ia l s  formula (Eq. 21) i s  a good approximation 

f o r  a l l  p r a c t i c a l  purposes. 

Unfor tunate ly  simple equations as Eq. 3 1  are no t  a v a i l a b l e  f o r  

laminates: Nevertheless i n  5 we w i l l  present actua l  so lu t i ons  obtained, 

using the methodology o u t l i n e d  i n  4. These so lu t i ons  represent  an 

exce l len t  compromise between p rec i s ion  and f l e x i b i l i t y  as w i l l  be shown. 

5 .  Results f o r  Laminates 

5.1 C y l i n d r i c a l  Bending o f  a Oo/900/Oo Laminate 

The s o l u t i o n  methodology f o r  a laminate i s  f i r s t  appl ied t o  a 

Oo/900/Oo sub jec t  t o  c y l i n d r i c a l  bending, as schemat ica l ly  shown i n  Fig.  

4. The r e s u l t s  obtained are compared w i t h  these which were publ ished by 

Pagano [ 31 who r i g o r o u s l y  solved t h i s  e l a s t i c i t y  problem ( i  .e. w i thou t  

b r i ng ing  i n  the  assumption t h a t  aZ i s  much smal ler  than ax and T ~ ~ ) .  

F i r s t  Eq.'s 20 are solved f o r  the  shear stresses a t  the  Oo/900 

i n te r faces .  Upon s u b s t i t u t i o n  o f  these r e s u l t s  i n t o  Eq. 25, the  center  

d e f l e c t i o n  i s  obtained as 

where c o e f f i c i e n t s  ai, bi and ci are def ined i n  Eq. 18 and MI and M2 are 

def ined by s u b s t i t u t i n g  e = 0" and 90" i n t o  Eq. 22. The same 

s u b s t i t u t i o n  i n t o  Eq. 2 1  de f ines  G13 = GLT and 623 = GTT. 

12 



The numerical values used Pagano's elasticity solution are: 

Ell = 171 GPa (25 lo6 psi) 
6 = 6.85 GPa (10 psi) 

= 3.42 GPa (.510 psi) '13 
GZ3 = 1.37 GPa (.210 psi) 

E22 
6 

6 

The plate has unit thickness, consequently h l  = h2 = - (as indicated in 

Fig. 4). 
3 

In order to compare our results with Pagano's [ 3 ] .  We need to 

deflections, obtained from Eq. 33, with a normalization 

100 EZ2(h2 + 2hl) 3 
J = W  

q0a4 
(34) 

multiply the 

fact or : 

The value w obtained for different span to thickness ratla s (a/h) 

and represented by the solid line in Fig. 5. The circles are 

the a values which were obtained, using the much more cumbersome Pagano 
solution. As can be seen, the agreement i s  excellent. Eq. 33 is thus 

especially useful as a simple solution for short thick beams (as used 

for composite leaf springs, hinges, helicopter rotor-connections and 

many other primary loadbearing structural applications). Fig 5 also 

indicates that our solution for correctly converges towards the 

classical plate theory (CPT) solutions for large span to thickness 

ratios. 

The shear stress T~ was solved, from E q ' s  20, as: 

13 



A L L  + 
' M1 G13 ' M2 '23 

To obtain this solution f o r  T~ we made use of the symmetry o f  the 

laminate, with respect to the x-axis, thus T~ = r3  and T~ = T~ = 0 . 
After substitution o f  Eq. 35 into Eq. 17, we obtain the shear 

stress distribution in the 0" layer (layer 1) 

T = C1 COshel az + C2 sinhs2 ez - a. G I 3  W 
XZ 

1 A aw 
2 sinh a l  y1 

c 2 - - -  - 

The shear stress distribution in the 90" layer (layer 2) is 

obtained as 

The distribution o f  the interlaminar shear stress through the 

thickness can now be plotted and compared to results obtained by Pagano 

[31, as shown in Fig. 6. The solid line i s  the current solution, as 

represented by Eq. I s 36 and 37 respectively, whereas the circles 

represent the solution obtained by Pagano. Both solutions were obtained 

14 



for a span to thickness ratio o f  4. As can be seen, the agreement 

between both solutions is excellent. The shear stress reaches a maximum 

at points A and C (Fig. 6.) in the 0" plies, which leads to the well- 

known cusp-like features in the shear stress distribution. The 

mathematical criterion for the occurence of a maximum within the 0" ply 

can be obtained by putting the derivative of Eq. 36 with respect to z 

equal to zero and by solving this equation for z. This procedure is 

demonstrated in appendix A. 

It is very encouraging that the current solution-methodology 

enables us to obtain the detailed features of the interlaminar shear 

stress distribution. The interlaminar shear stress is matrix dominated 

and has a very damaging effect on the integrity o f  structural composite 

components. The obtained result is essential since this work is part of 

a larger program on durability o f  composites and wishes to incorporate 

the time-dependent aspects which are due to the matrix-dominated nature 

of these stresses. 

Additionally, it has been shown that when tough thermoplastic-resin 

composites are impacted, most of the energy is dissipated through 

interlaminar shear deformtaion [ 4 ] .  This again emphasizes the 

importance o f  this solution methodology for the design o f  impact 

resistant structures. 

The distribution o f  bending stresses in the Oo/900/Oo laminate is 

obtained, using Eq. 16 combined with Eq. 36 (for the 0" ply) and Eq. 37 

( f o r  the 90" ply). The solid line in Fig. 7 was obtained using both 

formulas, whereas the circles represent the Pagano solution [ 3 ] .  

Excellent agreement is obtained. 

15 



By comparing Fig's 6 and 7 it can be seen that the corresponding 

locations, labeled A,  B, C, in both figures coincide with two maxima and 

minima in the shear stress distribution, It is well known from the 

theory of strength of materials, that the bending stress at the neutral 

axis (point 6 )  is zero, while the shear stress reaches a maximum. 

Strength of materials does not predict more than one maximum and is thus 

inapplicable for complex-multilayered composites which might have a 

number of maxima, proportional to the number of plies. 

5.2 Modeling o f  Interleaves or resin-Rich Regions 

Current methods to reduce the susceptibility o f  laminates to impact 

damage rely on the use o f  adhesive layers as interleaves . It was found 

[ 51 that these suppress impact-induced delamination, toughen the 

interface between two lamina and reduce matrix cracking. 

The methodology outlines in this paper should serve well to guide 

in the optimal placement of adhesive layers to obtain the greatest 

benefit in improving impact resistance. 

Consider a laminate, which consists of four 0" - plies, being 

subject to cylindrical bending. The loading conditions, geometry and 

material properties are same as for the example given in 5.1. 

The interlaminar shear stress-distribution in the four-ply laminate 

was calculated using Eq, 17. The result is represented by the solid 

line in Fig. 8, whereas the circles represent results obtained by using 

Pagano's [ 31 solution methodology. 
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The introduction of three epoxy interleaves ( E  = .68 GPa or lo5 psi 

and \J = .3) each of which only represents 3% o f  the total thickness 

drastically alters the shear-stress distribution as represented by the 

dotted line in Fig. 8. 

As can be seen, the maximum shear stress, reached at the center of 

the laminate, is 33% higher than for the case of the ideal 4-ply 

composite. This might exhaust the shear-deformation capability o f  the 

epoxy and lead to failure. Interleaves are thus more effective to 

suppress impact when placed closer to the surface. The presence of 

resin rich area's also enhances the creep-characteristics of the 

laminate and reduces its buckling resistance. Both these features are 

currently being implemented into the methodology which we outlined in 2. 

It can also be seen in Fig. 8 that the shear stress remains 

constant through the thickness of the interleaves. Consequently there 

will be discontinuities i n  the shear strains, because for shear modulus 

of the adhesive we used 1.37 GPa (.2 lb6 psi), while the shear modulus 

of the plies was taken as 3.42 GPa (.5106 psi). 

5.3 Experimental-Theoretical Correlation f o r  Thick Laminates Subject to 

Three-Point Bending 

Post and coworkers (61 obtained interlaminar shear strain 

distributions on 48 ply laminates subject to three-point bending. This 

experimental data was obtained by means of a high-precision moire'- 

interferometry method. A schematic o f  the experimental setup and the 

dimensions is schematically shown in Fig. 9. A shear strain 

distribution was experimentally obtained along the line A-B,  which is 

located at quarter span. 

17 



The analytical solution, which we obtained for the shear strain, 

using Eq. 17 can be written as: 

All variables in Eq. 38 have been defined in section 4. The applied 

load is represented by P = 6120 N (1350 lbs). The thickness h = 12.78 

mm (.5") and the span is 63.5 mm (2.5"). 

The material used was T300/5208, which has the following material 

properties: 

= 130 GPa (19 lo6 psi) 

= 6.85 (lob psi) '13 
The series in Eq. 38 was evaluated for up to 200 terms. A 

comparison revealed that changes of less than 1% occurred after the 

first eight to ten terms. The resulting shear strain distribution is 

represented by the solid line in Fig. 10. The circles represent the 

experimentally measured strains. As can be seen, the obtained agreement 

is very good. 

This agreement suggests a possible approach to obtain the 

interlaminar shear moduli 613 and 623. First the analytical formula, 

Eq. 38 is used to determine the maximum shear strain at quarter span. 

This maximum shear strain is subsequently plotted for shear moduli 

ranging from 1.37 GPa (.2 MSI) to 13.7 GPa (2 MSI). The result is 

plotted in Fig. 11. It is now sufficient to mark the experimentally 

measured maximum strain on the ordinate and to read the corresponding 
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interlaminar shear modulus, 613 on the abcissa, as indicated by the 

arrows in Fig. 11. The value thus obtained for G I 3  is 6.23 GPa (.91 

MSI). We should add that this is exactly equal to the value reported 

for T300/5209 by Sumsion and Rajapaske (71. Data obtained by means of 

ultrasound measurements on T300/5208 [8] is the only other literature 

source we found and which lists a value of 7.12 GPa (1.04 msi) for 613. 

The approach should also work to determine the shear modulus GZ3, 

which is often considered to be equal to 613 by the engineers who 

perform the finite element analysis. If indeed we would have made this 

em for the Oo/900/Oo laminate in 

the cusp-like features in the shear 

d not have shown up, as discussed in 

assumption, to solve the prob 

cylindrical bending, (see 5.11) 

stress-distribu-tion (Fig. 6) wou 

appendix A. 

The experimental results for T300/5208 and T300/5209 indicate that 

GZ3 is 44% and 49% lower than GI3. A difference of this magnitude is 

important enough to be considered for various design applications. 

Unfortunately the data is sorely lacking. Some data is available at 

room temperture, while none is available at elevated temperature. This 

conclusion is also true for the case of metal-matrix composites. 

4.4 Load-Deflection Behavior of a Shear-Beam 

Moussiaux et al. [9] recently published a paper on a new short-beam 

shear test specimen. The objective is to use the specimen for the shear 

characterization of an adhesive. The test-setup is schematically shown 

in Fig. 12. 

Two aluminum adherends are bonded together with an 

ogy developed in [9] relates the overall deflect methodo 

adhesive. The 

on o f  the beam 

19 



methodology which we outlined in this paper can be effectively used to 

obtain results which are identical to these in ref (91. We should add 

that the current approach is more general, because anisotropic adherends 

can be accounted for. It is also possible to locate the adhesive layer 

off-center and thus subject it t o  combined tensile and shear stresses. 

The deflection at the free end of the beam is obtained by expanding 

the load P in Fourier series and by applying the summation procedure, 

discussed in section 4, to Eq. 33. This equation is in principle only 

applicable for the case of a single supported beam. The current results 

for a clamped beam were obtained by using the statically equivalent case 

o f  a single supported beam of twice the length and subject to twice the 

load. 

Deflections were calculated for aluminum adherends 
7 GPa or 10 psi and v = .3) and for varying properties of 

(with E = 68. 

the adhesive. 

The length o f  the beam a = 63.5 mm (2.5"), the thickness of the 

adherends hl = 6.35 mm (.25") and the thickness of the adhesive was 7.27 

mm (0.5"). The applied load was 445 N (100 lb). 

First we calculated a reference deflection, Wref assuming that the 

adhesive has the same properties as the adherends. (i.e. the deflection 

of a clamped aluminum beam which has a thickness of 13.97mm, ( .55") ) .  

Subsequently the adhesive was made more and more compliant and the 

calculated deflection of the beam consequently increased. this 

deflection was normalized with respect to the reference deflection. 

The ratio W/Wref has been plotted in Fig. 13 in which the abcissa 

is the ratio of young's modulus of the adherends (E)  and the shear 

modulus of the adhesive (Gn). The solid line has been obtained using 

the methodology outlined in this paper. It was assumed that the 
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adhesive and the adherends have the same poissons ratio ( V  = .3). The 

ratio E/Ga thus increases from 2.6, for the solid aluminum beam, to 10’ 

for adherends which are basically no longer bonded. The triangles and 

the square symbols in Fig. 13 were obtained by Moussiaux et al. 191 and 

by using finite elements. 

The deflection treshold, which is obtained for high E/Ga ratio’s is 

reached because the very low stiffness of the adhesive allows the two 

adherends to act independently. A beam with unbonded adherends thus 

deflects about five times more than a solid aluminum beam. 

This value for the deflection treshold can also be obtained on the 

basis o f  strength o f  materials. The reference deflection is given as: 

The debonded beam can be pictured as two separate beams with a thickness 

hl, each of which is acted upon by a load o f  P/2. We thus obtain: 

a3 
3 W =  

h, L 3E - 12 
Dividing (40) by (39) we obtain: 

Upon substitution of the numerical values for hl and h2, we find 

3 .05 1 - -  - 7 (2 + x) = 5.32 ‘r( 

‘ref 
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which is very close to the result obtained in Fig. 13. 

Assuming that the adhesive was an epoxy with E = .68 GPa ( lo5  psi) 

and w = .3 we obtained the maximum shear stress in the adhesive layer as 

a function o f  the relative position along the beam, as plotted in Fig. 

14. The circles represent the results obtained by Moussiaux et al. 

(91. Again the agreement is excellent. 

It is generally agreed upon that the interphase between the 

adherent and the adhesive needs modeling. The solutions which we 

presented are ideally suited to accomplish this task. Interphase 

regions which are only a few hundred angstrom thick can be easily 

accounted for because of our ability to derive analytical solutions 

there is no risk to run into mathematical problems or problems with 

computer algorithms. Precise solutions are guaranteed. 

Results obtained by FIOR and Brinson [30] indicate that the use o f  

deflection measurements on the shear beam cannot be used to determine 

the shear modulus of stiff adhesives. Instead, shear deformation 

measurements similar to the procedure discussed in section 5.3 have been 

recommended. 

Notwhitstanding these comments, we further developed t h i s  procedure 

into dynamic regime, such that a simple frequency measurement defines 

the shear modulus of rigid as well as compliant adhesvies. These 

procedures are out1 ined in [ 111. 

5. Conclusions 

We demonstrated the use of simplified elasticity solutions, which 

lead to precise results for the displacements and the stresses in 

laminated composite beams and plates. 
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These solutions can be programmed on a simple hand calculator or on 

a PC. They can be used in the design office for preliminary sizing of 

structural composite and sandwich components subject to out-of-plane 

loads. 

It was shown that excellent agreement was obtained with the much 

more cumbersome full-elasticity solutions for laminated plates. Special 

features, such as adhesive interlayers and resin-rich regions can be 

accounted for without additional complications. Excellent agreement was 

obtained with experimentally measured shear strains, obtained on a 48- 

ply laminated beam which was subject to three-point bending. This 

agreement led to the proposition o f  a new interlaminar shear modulus 

characterization test. 

It was also shown that good agreement was obtained with results for 

the adhesive bonded shear beam. This opens the way to in-situ 

measurements of adhesive bondline properties. 

The solutions which we discussed are useful to support and to 

advance a framework for durability predictions that has been proposed by 

Brinson [ 121. More realistic constitutive equations, including 

hygrothermomechanical effects can be included by using the internal 

variable approach. 

6. Nomenclature 

strain-tensor components 

coefficients of the stiffness matrix 

stress-tensor components 

EX'EZ'EXZ 

'11 "13 "33 "55 

aX'aZ'TXZ 

u,w displacements in the x- and z-directions 

M stress-strain law coefficient (defined in Eq. (6)) 
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II wavelength 

Y 

“l’”2 

V T 2  

P 

a 

h 

transverse load distribution 

dimensionless anisotropy factor (defined in eq. 17) 

dimensionless geometry factor (defined in eq. 17) 

displacements along the top and bottom o f  a ply 

interlaminar shear stresses at the top and bottom of 
a PlY 

transverse load 

span 

thickness of a ply (or laminate) 

material properties using the L-T notatin 

The same material properties, using the 1-3 notation 

2 4  
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8. Appendix A: Maximum Shear Stress i n  a Oo/900/Oo Laminate 

As can be seen i n  Fig. 6, t he  shear s t ress reaches a peak i n  the  0" 

Eq. 36 can now be used t o  de r i ve  an expression f o r  the l o c a t i o n  layer.  

of t h i s  peak the shear s t ress i s  maximum i f  

- = o  a T  

az 

Thus a f t e r  s u b s i t u t i o n  o f  Eq. 36 i n t o  ( A . l )  we ob ta in  

C1 s inh B~ E Z  + Cz cosh B~ %z = 0 

So lu t i on  o f  A . 2  f o r  z and s u b s t i t u t i o n  o f  t he  values f o r  C1 and C2 

def ined i n  eq. 36 gives 

1 (A.3) 1 

W )  tanh 31 y1 
2n. '13 1 +  
T2 

hl hl Note t h a t  z l i e s  i n  the domain - t o  + - 2 .  
The obtained value o f  z i s  a l o c a l  coordinate measured t o  reference 

axes which are located a t  the center  o f  the 0 "  p l y ,  as i nd i ca ted  i n  Fig. 

A . l .  

Eq. A.3 was used t o  determine the maximum shear s t ress  i n  the 

Oo/900/Oo laminate, f o r  a vary ing G Z 3  modulus o f  the 90" layer .  A l l  

o the r  data used was the same as g iven i n  example 5.1. It was assumed 

t h a t  t he  laminate has u n i t  th ickness ( thus each p l y  has a th ickness of 

1/3) .  Table A . l  contains the  obtained r e s u l t s .  
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The negative signs in the solution for z mean that the maximum 

shear stress develops in that part of the 0" plies closer to the 0"/90" 

interface. It can be seen in the table that an increase in shear 

modulus GZ3 drives the maximum into the direction of the interface. 

This is made clearer in Fig. A.2, where we normalized G23 with respect 

to G13 ( G I 3  = 5.106 psi). The vertical axis identifies the location 

of ( T ~ ~ )  max in % of - (100% means the maximum is at the 0"/90" 

interface, 0% means the maximum i s  located at the center of the 0" ply). 

As can be seen from the figure, the maximum shear stress will act 

at the interface for G23/G13 ratio's larger than 7. A very low G23/G13 

ratio will force the 0" plies to act independently and force the maximum 

shear action at the center of each ply. The same reasoning applied to 

adhesively bonded beams, in which the adhesive changes properties due to 

environmental degradation and/or viscoelastic effects. 

hl  
2 
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1. 

2. 

3. 

4.  

5. 

6.  

7. 

8, 

9. 

10. 

11. 

12. 

13. 

14. 

Orthotropic compos 

List 

te P 

of Captions 

at e 

Simple-supported orthotropic beam 

Deviation between deflections obtained with strength of 
materials formulas and formulas outlined in this paper (for 
graphite epoxy material ) 

Cylindrical bending of Oo/900/Oo laminate. 

Comparison o f  deflections for a range of span/thickness ratio's 
obtained using the current model (solid line) and Pagano's full 
elasticity solution (circles). 

Comparison of interlaminar shear stresses, for span/thickness 
4, obtained using the current model (solid line) and Pagano's 
full elasticity solution (circles). 

Comparison of bending strains, for span/thickness = 4, obtained 
using the current model (solid line) and Pagano's full 
elasticity solution (circles). 

Effect of interleaves on the interlaminar shear stress. Curve 
1 line = no interleaves, Curve 2 = three interleaves. 

Experimental setup and dimensions of a 48 ply 0" - deg 
T300/5208 laminate 

Comparison of experimental (circles) and analytically (sol id 
line) obtained shear strain distiributions at quarter span. 

Variation o f  maximum shear strain, at quarter span, as a 
function of the shear modulus, 

Setup and dimensions of short beam shear test specimen. 

Deflection amplification for bonded shear beam for increasingly 
compliant adhesive. 

Maximum shear stress in the bonded shear beam for various 
positions along the span. Comparison with solution by 
Moussiaux et al. (circles) 
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Appendix B 

A. 1 Detail o f  0"-ply local coordinates 

A.2 Position o f  the location o f  maximum interlaminar shear stress 
in the 0" ply 

Table A . l .  

(WP:mech-res) 
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